Mortality-associated factors in a cohort of children with ventilator-associated pneumonia in a Latin American pediatric hospital
Main Article Content
Abstract
Background: Bearing in mind that ventilator-associated pneumonia (VAP) is the second most common healthcare-associated infection, it is important to identify factors related to its mortality, even more so in countries with limited resources. Objective: to determine risk factors for mortality due to VAP. Methods: prospective simple cohort study conducted between January 2017 and December 2020 that included children between 1 month and 14 years. Demographic variables, the severity of admission, type of VAP, causative germs, indications for ventilation, comorbidities, and medical interventions were related to mortality due to VAP. The diagnosis of VAP was made based on the 2013 CDC definition. Results: 46 children with VAP were included in the analysis. Mortality was 34.8 %. The factors associated with mortality were: pSOFA (Pediatric Sequential Organ Failure Assessment Score) in the first 24 hours of admission greater than 7 points (3.3 % vs. 50 %; OR: 29.0; CI-95 % [3.1 – 267 .4]; p < 0.0001), Enterobacter cloacae infection (3.3 % vs. 37.5 %; OR: 17.1; 95 % CI [1.9 – 162.7]; p = 0.002) and VAT (ventilator-associated tracheobronchitis ) (16.7 % vs. 50 %; OR: 5.0; 95 % CI [1.3 – 19.7]; p = 0.017). Shock, multiple organ dysfunction syndrome (MODS), and sepsis were also associated. Conclusions: pSOFA, Enterobacter cloacae infection, VATS, shock, SDMO, and sepsis were associated with mortality in children with VAP.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons
License Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
You are free to:
Share - copy and redistribute the material in any medium or format.
Adapt - remix, transform, and build upon the material The licensor cannot revoke these freedoms as long as you follow the license terms.
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
• NonCommercial — You may not use the material for commercial purposes.
• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM: Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122:160–166. DOI: https://doi.org/10.1177/003335490712200205
Vijay G, Mandal A, Sankar J, Kapil A, Lodha R, Kabra SK. Ventilator Associated Pneumonia in Pediatric Intensive Care Unit: Incidence, Risk Factors and Etiological Agents. Indian J Pediatr. 2018;85(10):861-866. DOI: https://doi.org/10.1007/s12098-018-2662-8
Gupta S, Boville BM, Blanton R, Lukasiewicz B, Wincek J, Bai C, et al. A multicentered prospective analysis of diagnosis, risk factors, and outcomes associated with pediatric ventilator-associated pneumonia. Pediatr Crit Care Med. 2015;16:65-8. DOI: https://doi.org/10.1097/PCC.0000000000000338
Beardsley AL, Nitu ME, Cox EG, Benneyworth BD. An evaluation of various ventilator-associated infection criteria in a PICU. Pediatr Crit Care Med 2016; 17: 73-7. DOI: https://doi.org/10.1097/PCC.0000000000000569
Valdez JA, Hernández HG, González N, Cravioto P. Costo de la neumonía asociada a ventilador en la unidad de terapia intensiva pediátrica Rev Latin Infect Pediatr. 2017;30(2): 62-67.
Mourani PM, Sontag MK. Ventilator-Associated Pneumonia in Critically Ill Children: A New Paradigm. Pediatr Clin North Am. 2017; 64:1039–1056. DOI: https://doi.org/10.1016/j.pcl.2017.06.005
Naveda O. Factores de riesgo para el desarrollo de neumonía asociada al ventilador: un estudio de casos y controles. Pediatr. (Asunción). 2022;49(1):46-56. DOI: https://doi.org/10.31698/ped.49012022007
Branch-Elliman W, Wright SB, Howell MD. Determining the ideal strategy for ventilator-associated pneumonia prevention. Cost-benefit analysis. Am J Respir Crit Care Med. 2015; 192:57-63. DOI: https://doi.org/10.1164/rccm.201412-2316OC
Society AT, America IDS of. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am J Respir Crit Care Med 2005;171:388–416. DOI: https://doi.org/10.1164/rccm.200405-644ST
Nseir S, Favory R, Jozefowicz E, Decamps F, Dewavrin F, Brunin G, et al; VAT Study Group. Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized, controlled, multicenter study. Crit Care. 2008; 12(3):R62.
Simpson VS, Bailey A, Higgerson RA, Christie LM. Ventilator-associated tracheobronchitis in a mixed medical/surgical pediatric ICU. Chest. 2013;144:32-38. DOI: https://doi.org/10.1378/chest.12-2343
CDC/National Healthcare Safety Network (NHSN). Surveillance for Ventilator-associated Events. Disponible en: https://www.cdc.gov/nhsn/acute-care-hospital/vae/index.html.
Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017;171(10):e172352.
Mohamed El-Mashad G, Said El-Mekkawy M, Helmy Zayan M. La escala pediátrica de evaluación del fallo multiorgánico secuencial (pSOFA): una nueva escala de predicción de la mortalidad en la unidad de cuidados intensivos pediátricos. An Pediatr (Barc). 2020;92(5): 277 – 285. DOI: https://doi.org/10.1016/j.anpedi.2019.05.018
López-Pueyo MJ, Barcenilla-Gaite F, Amaya-Villar R, Garnacho-Montero J. Multirresistencia antibiótica en unidades de críticos. Med. Intensiva. 2011;35(1): 41-53. DOI: https://doi.org/10.1016/j.medin.2010.07.011
The Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distres syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015; 16(5):428-39. DOI: https://doi.org/10.1097/PCC.0000000000000350
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of Health caree associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008; 36:309e32. DOI: https://doi.org/10.1016/j.ajic.2008.03.002
Kidney Disease Improving Global Outcomes (KDIGO). Acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012; Suppl 2:1-138.
Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definition for nosocomial infections. In: Olmsted RN, ed. Infection Control and Applied Epidemiology: Principle and Practice. St. Louis: Mosby; 2005:A1 – A20.
Cieza-Yamunaqué L, Coila-Paricahua E. Neumonía asociada a ventilación mecánica en la unidad de cuidados intensivos pediátricos de un hospital terciario, 2015 – 2018. Rev. Fac. Med. Hum. 2019; 19(3):19-26. DOI: https://doi.org/10.25176/RFMH.v19i3.2167
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315:801-810. DOI: https://doi.org/10.1001/jama.2016.0287
Schlapbach LJ, Straney L, Bellomo R, MacLaren G, Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS PELOD-2, and qSOFA for in-hospital mortalityamong children with suspected infection admitted to the intensive care unit. Intensive Care Med. 2018; 44:179-188. DOI: https://doi.org/10.1007/s00134-017-5021-8
Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a Pediatric Sequential Organ Failure Assessment Score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017; 171: e172352. DOI: https://doi.org/10.1001/jamapediatrics.2017.2352
Kruger S, Frechen D, Ewig S. Prognosis of ventlator-associated pneumonia: What lies beneath. Eur Respir J. 2001; 37:486 – 488. DOI: https://doi.org/10.1183/09031936.00123610
Pérez M, Figueroa H, Mendoza M. Traqueobronquitis y neumonía asociada al ventilador: curso clínico, consecuencias y pronóstico. Avan Biomedi. 2019; 8(3):113 – 119.
Grgurich P, Hudcova J, Lei Y, Sawar A, Craven D. Diagnosis of ventilator-associate pneumona: Controversies and working toward a gold standard. Curr Opin Infect Dis. 2013; 26:140-150. DOI: https://doi.org/10.1097/QCO.0b013e32835ebbd0
Nseir S, Favory R, Jozefowicz E, Decamps F, Dewavrin F, Brunin G, et al. Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized, controlled, multicenter study. Crit Care. 2008; 12(3): R62. DOI: https://doi.org/10.1186/cc6890
Mazzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012;7:887–902. DOI: https://doi.org/10.2217/fmb.12.61
Ferry A, Plaisant F, Ginevra C, Dumont Y, Grando J, Claris O, et al. Enterobacter cloacae colonisation and infection in a neonatal intensive care unit: retrospective investigation of preventive measures implemented after a multiclonal outbreak. BMC Infect Dis. 2020;20: 682. DOI: https://doi.org/10.1186/s12879-020-05406-8
Sadigov A, Mamedova I, Mammmadov K. Ventilator-Associated Pneumonia and In-Hospital Mortality: Which Risk Factors may predict In-Hospital Mortality in Such Patients. J Lung Health Dis. 2019; 3(4):8-12. DOI: https://doi.org/10.29245/2689-999X/2019/4.1157
Rodríguez M, Sánchez LG. Neumonía asociada a la ventilación mecánica en la Unidad de Cuidados Intensivos. Rev Ciencias Médicas. 2016; 20(5):603-607.