Exome yield for early diagnosis of rare genetic diseases in pediatric patients. Narrative Review

Main Article Content

Martha Cecilia Piñeros Fernández

Abstract

Introduction: The definition established by the World Health Organization of rare diseases is: «those that affect less than 5 to 7 individuals in 10,000 and approximately 6% to 8% of the world population» Theme: The  most common phenotypic category of  pediatric and adult cases are neurological disorders in studies conducted in different countries. In rare diseases such as platelet disorders and immunodeficiencies, the diagnostic yield of the exome is close to the 25% reported for genetic diseases of common presentation. Exome diagnostic yield data is above 50% in pediatric neurological diseases such as neuromuscular diseases, neurometabolic disorders, and hereditary spastic paraplegia and 50% in hereditary dilated cardiomyopathies. Conclusion: Technological advances such as next-generation sequencing has significantly facilitated the diagnosis and discovery of novel genes in patients with rare genetic diseases, especially with the introduction of exome sequencing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Piñeros Fernández, M. C. (2023). Exome yield for early diagnosis of rare genetic diseases in pediatric patients. Narrative Review. Pediatría, 56(2), e230. https://doi.org/10.14295/rp.v56i2.230
Section
Revisión narrativa

References

Organización Mundial de la Salud (OMS). Sitio web de la OMS [Internet]. Ginebra: OMS; [citado en 20 de junio de 2023]. Disponible en: https://www.who.int/bulletin/volumes/90/6/12-020612/es/.

RDCRN - National Institutes of Health. FACT SHEET - Rare Diseases Clinical Research Network [Internet]. 2010. Disponible en: https://www.rarediseasesnetwork.org/about/index.htm.

EURORDIS. What is a rare disease? Eurordis - Rare Diseases Europe [Internet]. Disponible en: http://www.eurordis.org/about-rare-diseases.

Orphanet. Procedural document on Epidemiology of rare disease in Orphanet (Prevalence, incidence and number of published cases or families). Orphanet [Internet]. Febrero 2019; Versión 01. Disponible en: https://www.orpha.net/orphacom/cahiers/docs/GB/Epidemiology_in_Orphanet_R1_Ann_Epi_EP_05.pdf.

Kaufmann P, Pariser AR, Austin C. From scientific discovery to treatments for rare diseases - The view from the National Center for Advancing Translational Sciences - Office of Rare Diseases Research. Orphanet J Rare Dis. 2018;13(1):1–9. DOI: https://doi.org/10.1186/s13023-018-0936-x

Herder M. What Is the Purpose of the Orphan Drug Act ? PLoS Med. 2017;1–5. DOI: https://doi.org/10.1371/journal.pmed.1002191

European Parliament. REGULATION (EC) No 141/2000 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 1999 on orphan medicinal products. European Commission [Internet]. Disponible en:

http://ec.europa.eu/health/files/eudralex/vol1/reg_2000_141/reg_2000_141_es.pdf

GlobalGenesProject. Rare diseases: facts and statistics. Global Genes [Internet]. 2017. Disponible en: https://globalgenes.org/rare-diseases-facts-statistics/.

Organización Mundial de la Salud (OMS). Priorización de medicamentos para enfermedades raras. OMS [Internet]. Disponible en:

https://www.who.int/medicines/areas/priority_medicines/Ch6_19Rare.pdf.

Ministerio de Salud y Protección Social (MinSalud). Ley 1392 de 2010. Ministerio de Salud y Protección Social [Internet]. Fecha desconocida. Disponible en:

https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/ley-1392-de-2010.pdf.

Pareja Arcila ML. Situación actual de las enfermedades huérfanas en Colombia 2017. Rev CES Derecho. 2017;231–41. DOI: https://doi.org/10.21615/cesder.8.2.2

Martinez JC, Misnaza SP. Mortalidad por enfermedades huérfanas en Colombia, 2008-2013. Biomédica. 2018;38(2):198–208. DOI: https://doi.org/10.7705/biomedica.v38i0.3876

OMIM. Gene Map Statistics. Online Mendelian Inheritance in Man (OMIM) [Internet]. Fecha desconocida. Disponible en: https://www.omim.org/statistics/geneMap.

Hartley T, Balcı TB, Rojas SK, Eaton A, Canada C, Dyment DA, et al. The unsolved rare genetic disease atlas? An analysis of the unexplained phenotypic descriptions in OMIM®. Am J Med Genet Part C Semin Med Genet. 2018;178(4):458–63. DOI: https://doi.org/10.1002/ajmg.c.31662

Rath A, Aymé S, Bellet B. Classification of rare diseases: a worldwide effort to contribute to the International Classification of Diseases. Orphanet J Rare Dis. 2010;5(S1):2010. DOI: https://doi.org/10.1186/1750-1172-5-S1-O21

Rosell AM, Pena LDM, Schoch K, Spillmann R, Sullivan J, Hooper SR, et al. Not the End of the Odyssey : Parental Perceptions of Whole Exome Sequencing ( WES ) in Pediatric Undiagnosed Disorders. J Genet Couns [Internet]. 2016;1019–31. Disponible en: http://dx.doi.org/10.1007/s10897-016-9933-1. DOI: https://doi.org/10.1007/s10897-016-9933-1

Hutchison CA. DNA sequencing: Bench to bedside and beyond. Nucleic Acids Res. 2007;35(18):6227–37. DOI: https://doi.org/10.1093/nar/gkm688

Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet [Internet]. 2010;11(1):31-46. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19997069. DOI: https://doi.org/10.1038/nrg2626

Wallace SE, Bean LJ. Educational Materials-Genetic Testing: Current Approaches. En: Prenatal Diagnosis [Internet]. 1993. Disponible en: https://www.ncbi.nlm.nih.gov/books/.

Wallace SE, Bean LJH. Educational Materials — Genetic Testing : Current Approaches. 2017 Mar 14 [Updated 2018 Feb 12] In:Adam MP, Ardinger HH, Pagon RA, et al., Editors.GeneReviews®. Seattle,WA: University of Washington, Seattle;1993-2019; 2018. 1–13 p.

Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A [Internet]. 2009;106(45). Disponible en: DOI: https://doi.org/10.1073/pnas.0910672106

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768590/pdf/zpq19096.pdf%5Cnpapers3://publication/uuid/5DF4BB8B-64A5-4CDA-BAEE-C83FF8366912.

Berg AO, Berg JS, Brown CW, Burke W, Calonge BN, Chung WK, et al. An evidence framework for genetic testing. An Evidence Framework for Genetic Testing. 2017. 1–136 p.

Yang Y, Muzny DM, Xia F, Niu Z, Person R, Veeraraghavan N, et al. Molecular Findings Among Patients Referred for Clinical WholeExome Sequencing. JAMA. 2014;312(18):1870–9. DOI: https://doi.org/10.1001/jama.2014.14601

Wenger AM, Guturu H, Bernstein JA, Bejerano G. Original Research Article Systematic reanalysis of clinical exome data yields additional diagnoses : implications for providers. Genet Med. 2017;19(2). DOI: https://doi.org/10.1038/gim.2016.88

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. DOI: https://doi.org/10.1038/gim.2015.30

Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. En: Bamshad MJ, editor. Medical Genetics [Internet]. 2015; p. 199-215. DOI: https://doi.org/10.1016/j.ajhg.2015.06.009

Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Vol. 10, Nature Reviews Genetics. 2009. p. 57–63. DOI: https://doi.org/10.1038/nrg2484

Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, et al. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am J Hum Genet [Internet]. 2019;104(3):466–83. Disponible en: https://doi.org/10.1016/j.ajhg.2019.01.012. DOI: https://doi.org/10.1016/j.ajhg.2019.01.012

Arts P, Simons A, Alzahrani MS, Yilmaz E, Alidrissi E, Van Aerde KJ, et al. Exome sequencing in routine diagnostics: A generic test for 254 patients with primary immunodeficiencies. Genome Med. 2019;11(1):1–15. DOI: https://doi.org/10.1186/s13073-019-0649-3

Fattahi Z, Kalhor Z, Fadaee M, Vazehan R, Parsimehr E, Abolhassani A. Improved diagnostic yield of neuromuscular disorders applying clinical exome sequencing in patients arising from a consanguineous population. 2017;386–402. DOI: https://doi.org/10.1111/cge.12810

Romasko EJ, Devkota B, Biswas S, Jayaraman V, Jairam S, Scarano MI, et al. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am J Hematol. 2018;93(1):8–16. DOI: https://doi.org/10.1002/ajh.24917

Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017;171(9):855–62. DOI: https://doi.org/10.1001/jamapediatrics.2017.1755

Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, et al. The national institutes of health undiagnosed diseases program: Insights into rare diseases. Genet Med. 2012 Jan 1;14(1):51–9. DOI: https://doi.org/10.1038/gim.0b013e318232a005

López-Martín E, Martínez-Delgado B, Bermejo-Sánchez E, Alonso J. SpainUDP: The Spanish undiagnosed rare diseases program. Int J Environ Res Public Health. 2018;15(8):1–17. DOI: https://doi.org/10.3390/ijerph15081746

Sitek JC, Kulseth MA, Rypdal KB, Skodje T, Sheng Y, Retterstøl L. Whole-exome sequencing for diagnosis of hereditary ichthyosis. 2018;1022–7. DOI: https://doi.org/10.1111/jdv.14870

Mazzucato M, Visonà L, Pozza D, Manea S, Minichiello C, Facchin P. A population-based registry as a source of health indicators for rare diseases : the ten-year experience of the Veneto Region ’ s rare diseases registry. 2014;1–13. DOI: https://doi.org/10.1186/1750-1172-9-37

Schofield D, Alam K, Douglas L, Shrestha R, Macarthur DG, Davis M, et al. Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. Genomic Med. 2017;2(4). DOI: https://doi.org/10.1038/s41525-017-0006-7

Tarailo-graovac M, Wasserman WW, Karnebeek CDM Van, Wasserman WW, Karnebeek CDM Van. Impact of next-generation sequencing on diagnosis and management of neurometabolic disorders : current advances and future perspectives. Expert Rev Mol Diagn [Internet]. 2017;17(4):307–9. Disponible en: http://dx.doi.org/10.1080/14737159.2017.1293527. DOI: https://doi.org/10.1080/14737159.2017.1293527

Balicza P, Grosz Z, Gonzalez MA, Bencsik R, Pentelenyi K, Gal A, et al. Journal of the Neurological Sciences Genetic background of the hereditary spastic paraplegia phenotypes in Hungary — An analysis of 58 probands. 2019;364(2016):116–21. DOI: https://doi.org/10.1016/j.jns.2016.03.018

Long P, Evans J, Olson T. Diagnostic Yield of Whole Exome Sequencing in Pediatric Dilated Cardiomyopathy. J Cardiovasc Dev Dis. 2017;4(4):11. DOI: https://doi.org/10.3390/jcdd4030011

Ghosh A, Schlecht H, Heptinstall LE, Bassett JK, Cartwright E, Bhaskar SS, et al. Diagnosing childhood-onset inborn errors of metabolism by next-generation sequencing. Arch Dis Child. 2017;102(11):1019–29. DOI: https://doi.org/10.1136/archdischild-2017-312738

Thevenon J, Duffourd Y, Lefebvre M, Feillet F, Steinmetz A, Huet F, et al. Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet. 2016;89:700-707. DOI: https://doi.org/10.1111/cge.12732

Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, Yoon G, Rouleau GA, Suchowersky O, Siu V, Murphy L, Hegele RA, Marshall CR; FORGE Canada Consortium; Bulman DE, Majewski J, Tarnopolsky M, Boycott KM. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014 Jan;35(1):45-9. doi: 10.1002/humu.22451. PMID: 24108619; PMCID: PMC4255313. DOI: https://doi.org/10.1002/humu.22451

Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet [Internet]. 2019;408-421. Disponible en: http://dx.doi.org/10.1038/s41431-018-0299-8. DOI: https://doi.org/10.1038/s41431-018-0299-8

Tumiené B, Writzl AMK, Hodzic A, Čuturilo G, Kuzmani R, Culic V, et al. Diagnostic exome sequencing of syndromic epilepsy patients in clinical practice. Clin Genet. 2018;93(September 2017):1057–62. DOI: https://doi.org/10.1111/cge.13203

Warman Chardon J, Beaulieu C, Hartley T, Boycott KM, Dyment DA. Axons to Exons: the Molecular Diagnosis of Rare Neurological Diseases by Next-Generation Sequencing. Curr Neurol Neurosci Rep. 2015;15(9):1–9. DOI: https://doi.org/10.1007/s11910-015-0584-7

Wright CF, Mcrae JF, Clayton S, Gallone G, Fitzgerald TW, Jones P, et al. Europe PMC Funders Group Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1133 families with developmental disorders. 2018;20(10):1216–23. DOI: https://doi.org/10.1038/gim.2017.246

Bergant G, Maver A, Lovrecic L, Cuturilo G, Hodzic A, Peterlin B. Comprehensive use of extended exome analysis improves diagnostic yield in rare disease: a retrospective survey in 1, 059 cases. Genet Med. 2018;20(3). DOI: https://doi.org/10.1038/gim.2017.142

Lee H, Deignan J, Dorrani N, Strom S, Kantarci S, Quintero-Rivera F, et al. Clinical Exome Sequencing for Genetic Identification of rare Mendelian Disorders. JAMA. 2014;312(18):1880–7. DOI: https://doi.org/10.1001/jama.2014.14604

Nambot S, Thevenon J, Kuentz P, Duffourd Y, Tisserant E, Bruel A, et al. Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and / or intellectual disability : substantial interest of prospective annual reanalysis. Genet Med [Internet]. 2017;20(6):645–54. Disponible en:

http://dx.doi.org/10.1038/gim.2017.162. DOI: https://doi.org/10.1038/gim.2017.162

Orphadata. Orphadata: a platform for rare disease data management and epidemiological research [Internet]. Fecha desconocida. Disponible en: https://www.orpha.net/consor/cgi-bin/index.php?lng=EN.

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.